
BioQueue Documentation
Release 1.0.0

Li Yao

Mar 09, 2018

Contents

1 How does BioQueue work? 3

2 Contents 5
2.1 Get Started . 5
2.2 Protocol . 7
2.3 Job . 13
2.4 Examples . 15
2.5 FAQ . 16
2.6 Cluster Specification . 18

3 Indices and tables 23

i

ii

BioQueue Documentation, Release 1.0.0

BioQueue is a lightweight and easy-to-use queue system to accelerate the proceeding of bioinformatic workflows.
Based on machine learning methods, BioQueue can maximize the efficiency, and at the same time, it also reduces the
possibility of errors caused by unsupervised concurrency (like memory overflow). BioQueue can both run on POSIX
compatible systems (Linux, Solaris, OS X, etc.) and Windows.

Contents 1

BioQueue Documentation, Release 1.0.0

2 Contents

CHAPTER 1

How does BioQueue work?

One very conspicuous characteristic of data analyses in bioinformatics is that researchers usually need to analyze large
amount of data by using the same protocol and other researchers may need to use this protocol to analyze their own data
too. So improving the reusability of protocol is very crucial. To achieve this goal, BioQueue explicitly differentiates
two concepts. One concept is “protocol”, which is a chain of steps consisting of software and its parameters that
define the behavior of the analysis. When a “protocol” is assigned with specific experimental variables, like input
files, output files or sample name, the protocol will turn into a runnable “job”. So to analyze data with BioQueue, you
need to create a protocol first.

BioQueue is based on a chain of checkpoints which not only provide the support for reentrancy (The ability of a
program to continue its execution from where it lefts off if interrupted, without restarting from the beginning of a
process), but also estimate the resources (CPU, memory and disk usage) required by following steps. And if the
system resources are abundant for the next step, BioQueue will execute it, otherwise the step has to wait until there
are enough resources.

3

BioQueue Documentation, Release 1.0.0

4 Chapter 1. How does BioQueue work?

CHAPTER 2

Contents

2.1 Get Started

2.1.1 Prerequisites

BioQueue can store data on SQLite, which means users can set up BioQueue without an extra database software.
However, to achieve a higher performance, we suggest users to install MySQL. For Windows users, download the
MySQL Installer or Zipped binary from MySQL. For POSIX compatible systems (like Ubuntu) users, running the
following command should be enough to install MySQL server:

sudo apt-get install mysql-server mysql-client
sudo apt-get install libmysqld-dev
mysql -u root -p
CREATE DATABASE BioQueue;
CREATE USER 'bioqueue'@'localhost' IDENTIFIED BY 'YOURPASSWORD';
GRANT ALL PRIVILEGES ON BioQueue . * TO 'bioqueue'@'localhost';

Please replace ‘YOURPASSWORD’ with your own password for the database!

Since BioQueue is written in Python 2.7, please make sure that you have installed Python and pip. The following
instructions are for Ubuntu 14.04, but can be used as guidelines for other Linux flavors:

sudo apt-get install build-essential
sudo apt-get install python-dev
sudo apt-get install python-pip

2.1.2 Installation

First of all, clone the project from github (Or you can download BioQueue by open this link):

git clone https://github.com/liyao001/BioQueue.git
Or
wget https://github.com/liyao001/BioQueue/zipball/master

5

http://www.mysql.com/downloads/
https://github.com/liyao001/BioQueue/zipball/master

BioQueue Documentation, Release 1.0.0

NOTE:Download archives rather than use git makes it more difficult to stay up-to-date with BioQueue code
because there is no simple way to update the copy.

Then navigate to the project’s directory, and run the install.py script (All dependent python packages will be
automatically installed):

cd BioQueue
python install.py

When running install.py, this script will ask you a few questions including:

1. CPU cores: The amount of CPU to use. Default value: all cores on that machine.

2. Memory (Gb): The amount of memory to use. Default value: all physical memory on that machine.

3. Disk quota for each user(Gb, default value: all disk space on that machine).

If you decide to run BioQueue with MySQL, the script will ask a few more questions:

1. Database host: If you install MySQL server on your own machine, enter localhost or 127.0.0.1.

2. Database user: user name of the database. bioqueue by default.

3. Database password: password of the database.

4. Database name: Name of the data table.

5. Database port: 3306 by default

Start the queue

Run bioqueuepy script in the BioQueue/worker folder:

python worker/bioqueue.py

For Linux/Unix users, BioQueue can run in the background by running bioqueue_daemon.py instead of
bioqueue.py:

python worker/bioqueue_daemon.py start

Start web server

Run the following command to start the webserver:

python manage.py runserver 0.0.0.0:8000

This will start up the server on 0.0.0.0 and port 8000, so BioQueue can be accessed over the network. If you want
access BioQueue only in local environment, remove 0.0.0.0:8000. If you want to use BioQueue in a production
environment, we recommend you to use a proxy server instead of manage.py (see detail at FAQ).

Start FTP server

BioQueue provides a FTP server to make it more convenient to transfer files, to run this server:

python worker/ftpserver.py

6 Chapter 2. Contents

faq.html#use-bioqueue-with-apache-in-production-environment

BioQueue Documentation, Release 1.0.0

This step is optional, if you run command above, the FTP server will listen 20001 port by default. For Linux/Unix
users, BioQueue FTP service can run in background by run ftp_daemon.py instead of ftpserver.py:

python worker/ftp_daemon.py start

2.1.3 Useful informations

1. To stop the queue, the webserver or the FTP server, just hit Ctrl-c in the terminal from which BioQueue is
running. If you run the queue or FTP server in the background, hit:

python worker/bioqueue_daemon.py stop
python worker/ftp_daemon.py stop

2. To get a better performance, moving the webserver to Apache or nginx is a good idea.

2.2 Protocol

Like wet experiments, a protocol (or workflow, pipeline in other software) in bioinformatics is built from several linked
steps that consume inputs, process and convert data and produce results. To analyze data, you need to create a protocol
to tell BioQueue what it should do for you.

2.2.1 Create a Protocol

To create a new protocol, you can either click Create Protocol button at the homepage or click New Protocol
at the sidebar. Since neither programming nor software engineering is included in a typical biological curriculum,
making the syntax as easy as possible is very necessary. When creating a protocol, BioQueue implements the shell
command-like syntax rather than a domain-specific language (DSL). Basically, each step of the protocol consists of
software and its parameter (which can easily get from the software’s documentation). For example, if you want to use
HISAT2 to map reads produced by next-generation sequencing, the original command may like this:

hisat2 -x ucsc_hg19.fastq -1 Sample1_1.fastq -2 Sample1_2.fastq -S alns.sam -t 16

In BioQueue, you need to enter the software (“hisat2”) into Software textbox, and then enter “-x ucsc_hg19.fastq
-1 reads_1.fastq -2 reads_2.fastq -S alns.sam -t 16” into Parameter textbox.

2.2. Protocol 7

faq.html#use-bioqueue-with-apache-in-production-environment
http://nginx.org/

BioQueue Documentation, Release 1.0.0

Actually, a typical protocol contains many steps, so you can click the Add Step button to add more step. After you
added all steps, click Create Protocol button.

2.2.2 Make Protocol Reusable

Though BioQueue explicitly separates the concepts of “protocol” and “job”, a protocol can convert into a runnable
job without assigning any experimental values. However, we strongly recommend you replace those values with
wildcards (strings embraced with braces, like “{ThreadN}”) to make the protocol reusable and reproducible. For
instance, if you want to utilize HISAT2 to map reads, you can replace “Sample1_1.fastq” with {READS1}, and
replace “Sample1_2.fastq” with {READS2}. So, the protocol may like this:

hisat2 -x ucsc_hg19.fastq -1 {READS1} -2 {READS2} -S alns.sam -t 16

And then you should tell BioQueue the value of the two wildcards when you create a job by entering:

READS1=Sample1_1.fastq;READS2=Sample1_2.fastq;

into Job Parameter textbox.

8 Chapter 2. Contents

BioQueue Documentation, Release 1.0.0

Note: BioQueue will automatically load all the experimental variables into the Job parameter textbox.

And if you want to analyze one more sample (for example Samples), you just need to type:

READS1=Sample2_1.fastq;READS2=Sample2_2.fastq

Otherwise, you will have to create a new protocol.

2.2.3 Mapping Files Between Steps

In most cases, a step denotes how to create output files from input files. Since a protocol usually consists of many
steps, making mapping of files flexible enough is a very important issue. So BioQueue provides three types of file
mapping methods to do this.

The first method is to write the file name directly. For some tools, the output files have standard names. One example
is STAR, when it finished mapping RNA-SEQ reads, it would produce those files:

1. Log.out

2. Log.progress.out

3. Log.final.out

4. Aligned.out.sam

5. SJ.out.tab

So, if you want to use the mapped SAM file in the following steps, you can enter “Aligned.out.sam” straightforwardly.

The second method is to use the “Suffix” wildcard. For example, if you want to use the SAM file produced by the
previous step, you can enter “{Suffix:sam}”. If you would like to use the “Suffix” wildcard to map file from any steps
before rather than the last step, “Suffix:N-FileSuffix” might be very helpful (“N” means the n-th steps).

The third method is to use the “Output” family wildcards. Here is a table of those wildcards:

2.2. Protocol 9

https://github.com/alexdobin/STAR

BioQueue Documentation, Release 1.0.0

Wildcard Description
InputFile The initial input files which maps to files you provide when you create a job.
InputFile:N The n-th file in input files.
LastOutput Output files of last step.
LastOutput:N The n-th output file of last step (in alphabetical order).
Output:N-M The m-th output file of the n-th step (in alphabetical order)+.
AllOutputBefore All output files before this step.

2.2.4 More About Wildcards

There are two main types of wildcards in BioQueue: pre-defined wildcards and user-defined wildcards (experimental
variables and reference). Below is a table of pre-defined wildcards:

Wildcard Description
Suffix:X Output file(s) with a “X” suffix in the last step.
Suffix:N-X Output file(s) with a “X” suffix in the n-th step.
Suffix:N-X-M The m-th output file with a “X” suffix in the n-th step.
InputFile The initial input files which maps to files you provide when you create a job.
InputFile:N The n-th file in input files.
LastOutput Output files of last step.
LastOutput:N The n-th output file of last step (in alphabetical order).
Output:N-M The m-th output file of the n-th step (in alphabetical order).
History:N-X Output file “X” in the n-th job.
AllOutputBefore All output files before this step.
Job Job ID.
Workspace Local storage path for the job.
ThreadN The number of CPUs in the running node.

Now, let’s have a look at the user-defined wildcards. As we mentioned before, BioQueue suggests users use wildcards
to denote experimental variables in protocols, like sample name. This type of user-defined wildcards need to be
assigned as Job parameter when creating jobs. In bioinformatics, there are some data that can be cited in different
protocols, such as reference genome, GENCODE annotation, etc. So, in BioQueue, biological data that may be used
in multiple protocols is called a “reference”. This is the other type of user-defined wildcards and it is defined at the
Reference page.

10 Chapter 2. Contents

BioQueue Documentation, Release 1.0.0

Use Reference

The aim of implementing the concept of “reference” is to reduce the redundancy of protocols (see the table below),
consequently, references are available to all protocols of the user. We recommend creating references for genome files,
SNP annotation files and gene annotation files, etc. Let’s suppose you have a human reference genome file “hg38.fa”
in the folder “/mnt/biodata/reference_genome”, thus you can type “HG38” in Reference Name textbox and assign
the value “/mnt/biodata/reference_genome/hg38.fa” into the Reference Value textbox.

Here is a table showing how the usage of reference can reduce the redundancy of protocols.

Without Reference With Reference
One
step in
pro-
tocol
A

hisat2-build /mnt/biodata/reference_genome/
hg38.fa genome

hisat2-build {HG38} genome

One
step in
pro-
tocol
B

java -jar gatk.jar -T HaplotypeCaller -R /mnt/
biodata/reference_genome/hg38.fa -I
input.bam -dontUseSoftClippedBases -stand_call_conf
20.0 -stand_emit_conf 20.0 -o output.vcf

java -jar gatk.jar -T Haplotype-
Caller -R {HG38} -I input.bam -
dontUseSoftClippedBases -stand_call_conf
20.0 -stand_emit_conf 20.0 -o output.vcf

Note: Don’t forget to add braces before you use a reference in any of your protocol, like {HG38}!

Shortcuts for Creating Reference

To facilitate our users to create a reference with ease, we provide some shortcuts. Both uploaded files and job output
files can be set as a reference by clicking the Create a reference button on either Sample Pool page, which
can be accessed through clicking the Sample Pool button in index, or Job Status page (When you click on the
output folder, you will be able to see the button in the new dialog.)

2.2.5 Create a Protocol with Ease

To help general biologists to create a protocol with ease, we provide auxiliary functions which cover the entire process.

1. Knowledge Base

We set up a knowledge base on our open platform, so when our users need to search the usage information about a
certain software, they can click the How to use the software? button.

2. Autocomplete

We provide an autocomplete widget to provide suggestions about pre-defined wildcards and user-defined references.
Here is a demo:

In the demo, {HISAT2_HG38} is a user-defined reference, which refers to the path of hg38 indexes for HISAT2.
While {InputFile:1}, {InputFile:1} and {ThreadN} are pre-defined wildcards.

2.2. Protocol 11

BioQueue Documentation, Release 1.0.0

2.2.6 Edit Steps

When you need to change parameters of a certain step, you should click Edit Protocol at the sidebar. Then you
move mouse to Operation column where the protocol locates in, and click the Edit Protocol label.

When the steps’ table shows up, you can click the parameter of the step. Now you can edit the parameter. Once you
click any place at that page, your changes will be saved automatically.

2.2.7 Share Protocol With Peer

We know the importance of making computational analysis in life sciences:

1. Easily to get started for researchers who do not have a strong background in computer science (accessibility);

2. Easily to reproduce the experimental results;

So, protocols written by BioQueue can be shared with a peer who are using the same platform, and BioQueue can
generate a portable protocol file which can be published on the Internet.

To share a protocol with a peer, you need to open the Edit protocol page, and choose Share in the Operation
column.

Then enter username of the peer you want to share with, and click Share with a peer.

To share a protocol with the public, you need to open the same dialog, and click the Build a sharable
protocol button, then a protocol file would be generated. You can publish this protocol on BioQueue Open Platform
or any other web forums.

12 Chapter 2. Contents

http://open.bioqueue.org

BioQueue Documentation, Release 1.0.0

2.3 Job

2.3.1 Create a Job

To create a new job, you can either click the Create New Job button at the homepage or click the New Job link
at the sidebar.

Firstly, you need to choose a protocol for this job. To make a protocol reusable, you might have placed some wildcards
in your protocol, so you need to assign values to those wildcards, like input files, sample name, etc. As mentioned
before, BioQueue provides two pre-defined wildcards InputFile and InputFileN for mapping input files to a
protocol. Those two wildcards are defined in Input files textbox. In BioQueue, there are three types of input
files:

1. FTP file: Files uploaded through BioQueue FTP server. To make sure the safety of your data, BioQueue will
hide the store path of those files. When you need to use those files, you can click the Choose FTP file
button, then select files you need. Or, you can manually type {Uploaded:FILENAME} into Input files
textbox.

2. Local file: For users who only use BioQueue in local environment, there’s no need to transfer files through FTP.
So, you can put your files at some place, and then use the absolute path of the file, like /mnt/biodata/
RNAseq/sample1_1.fastq.

3. Remote file: For security, BioQueue will not fetch remote files by default. So to use these files, you may need
to add a download step in your protocol, like wget {InputFile}.

When you want to add more than one file into Input files textbox, do not forget to add a semicolon at the end of
each file. For example:

{Uploaded:ERR030878_1.fastq.bz2};{Uploaded:ERR030878_2.fastq.bz2};

If you use {InputFile} in a step, then it will be replaced by user_ftp_store_path/ERR030878_1.
fastq.bz2 user_ftp_store_path/ERR030878_2.fastq.bz2, {InputFile1} will be replaced
by user_ftp_store_path/ERR030878_1.fastq.bz2, and {InputFile2} will be replaced by
user_ftp_store_path/ERR030878_2.fastq.bz2.

For user-defined wildcards, you can declare them in the Job parameter textbox by entering wildcard=value;
. For instance, in our demo protocol, there are two user-defined wildcards (SAMPLENAME and SEQMACHINE), if
you want assign ERR030878 to SAMPLENAME, and HighSeq2000 to SEQMACHINE, enter the following text into
Job parameter textbox:

2.3. Job 13

BioQueue Documentation, Release 1.0.0

SAMPLENAME=ERR030878;SEQMACHINE=HiSeq2000;

In the end, click the Push job into queue button.

2.3.2 Create Batch of Jobs

In most cases, we need to analyze multiple samples with the same protocol. And it’s usually tedious to create jobs
one by one. So BioQueue provides a very convenient way to do it. You can provide a file containing three columns to
describe the jobs you want to create. Here are those three columns:

1. Protocol Id, which can be found in the Edit Protocol page.

2. Input files.

3. Job parameter.

Then click Upload and create button. Note: columns should be separated by Tab (\t)

2.3.3 Reentrancy

When we manually terminate a job or some errors occur that cause the termination of a job, we might want to restart
the job by directly running the step where the job was terminated rather than rerun all the steps, which is so-called
reentrancy. In BioQueue, there are checkpoints before the execution of each step, so when click the Resume tag in
the Operation column, the job will be automatically restart from the step where the termination occurs.

Here is a diagram showing the difference between rerun and resume.

14 Chapter 2. Contents

BioQueue Documentation, Release 1.0.0

2.4 Examples

2.4.1 Transcript-level expression analysis of RNA-seq experiments with HISAT,
StringTie

This protocol is created according to this nature protocol paper:

Software Parameter
hisat2 -p {ThreadN} --dta -x {HISAT2_HG38} -1 {InputFile:1} -2 {InputFile:2} -S {EXP}.sam
samtools sort -@ {ThreadN} -o {EXP}.sorted.bam {EXP}.sam
stringtie -p {ThreadN} -G {GENCODE_HG38} -o {EXP}.gtf -l {EXP} {EXP}.sorted.bam

Reference settings

Reference Name Reference Value
HISAT2_HG38 The folder stores hg38 genome index for hisat2, this is generated by hisat2-build
GENCODE_HG38 Path of a gene annotation file, like /mnt/biodata/gencode_hg38_v23.gtf

Job Initial

Input files:

{Uploaded:ERR033015_1.fastq};{Uploaded:ERR033015_2.fastq};
Or /mnt/biodata/samples/ERR033015_1.fastq;/mnt/biodata/samples/ERR033015_2.fastq

Job parameter:

EXP=ERR033015;

2.4.2 Calling variants in RNAseq (STAR-gatk)

This protocol is created according to gatk’s Best-Practices provided by Broad Institute:

Soft-
ware

Parameter

STAR –genomeDir {STAR_HG38} –readFilesIn {InputFile:1} {InputFile:2} –runThreadN {ThreadN}
STAR –runMode genomeGenerate –genomeDir 2pass –genomeFastaFiles {HG38} –sjdbFileChrStartEnd

SJ.out.tab –sjdbOverhang 75 –runThreadN {ThreadN}
STAR –genomeDir 2pass –readFilesIn {InputFile:1} {InputFile:2} –runThreadN {ThreadN}
java -jar {picard} AddOrReplaceReadGroups I=Aligned.out.sam O=rg_added_sorted.bam SO=coordinate

RGID={RGID} RGLB={RGLB} RGPL={RGPL} RGPU={RGPU} RGSM={RGSM}
java -jar {picard} MarkDuplicates I=rg_added_sorted.bam O=dedupped.bam CREATE_INDEX=true VALI-

DATION_STRINGENCY=SILENT M=output.metrics
java -jar {gatk} -T SplitNCigarReads -R {HG38} -I dedupped.bam -o split.bam -rf ReassignOneMappingQual-

ity -RMQF 255 -RMQT 60 -U ALLOW_N_CIGAR_READS
java -jar {gatk} -T HaplotypeCaller -R {HG38} -I input.bam -dontUseSoftClippedBases -stand_call_conf 20.0

-stand_emit_conf 20.0 -o output.vcf
java -jar {gatk} -T VariantFiltration -R {HG38} -V output.vcf -window 35 -cluster 3 -filterName FS -filter “FS

> 30.0” -filterName QD -filter “QD < 2.0” -o output.hard.filtered.vcf

2.4. Examples 15

http://www.nature.com/doifinder/10.1038/nprot.2016.095
https://www.broadinstitute.org/gatk/guide/article?id=3891

BioQueue Documentation, Release 1.0.0

Reference settings

Reference
Name

Reference Value

STAR_HG38 The folder stores hg38 genome index for star, this is generated by command STAR --runMode
genomeGenerate

HG38 Path of a reference genome file, like /mnt/biodata/hg38.fa
picard Path of picard.jar, like /mnt/biosoftware/picard.jar
gatk Path of GenomeAnalysisTK.jar, like /mnt/biosoftware/GenomeAnalysisTK.jar

Job Initial

Input files:

{Uploaded:ERR033015_1.fastq};{Uploaded:ERR033015_2.fastq};
Or /mnt/biodata/samples/ERR033015_1.fastq;/mnt/biodata/samples/ERR033015_2.fastq

Job parameter:

RGID=4;RGLB=lib1;RGPL=illumina;RGPU=unit1;RGSM=20;

2.5 FAQ

2.5.1 Upload file

When uploading datasets, the files are usually cached in memory till the upload is finished. In bioinformatics research,
files are large in most cases, so it may eat up memory. To avoid this risk, BioQueue provide a FTP service. The
administrator can start the service by running:

python ftp_daemon.py start
Or
python ftpserver.py

And users can use a ftp client (FileZilla, the free FTP solution) to access this service. Files will be uploaded to user’s
upload folder, and those files can be selected by click the Choose FTP file in the Create Job page. Note: the
user name and password are identical to those in BioQueue web platform. The default port is 20001 not 21.

2.5.2 How to update BioQueue

We will bring new features and fix bugs when we release a new version. So we recommand you to keep your instance
as new as possible. If you have an BioQueue repository and want to update it, there are several ways to do so.

16 Chapter 2. Contents

https://filezilla-project.org/

BioQueue Documentation, Release 1.0.0

1. Run update.py in worker folder

We provide a python script named as update.py in worker folder, which will check updates for both BioQueue’s
source code and dependent packages:

python worker/update.py

Also, for Linux/Unix users, BioQueue update service can run in background by run update_daemon.py instead
of update.py:

python worker/update_daemon.py start

This service will check for update everyday.

2. Click Update button in Settings page

We also provide an update button in the Settings page, clicking the button, BioQueue will call update.py to
update your instance.

3. git pull

You can also use git pull command to update BioQueue’s source code, but this command won’t update the dependent
packages!

4. NOTE

The update service relies on git, so please make sure that you have installed git and you cloned BioQueue from GitHub.

2.5.3 Use BioQueue with Apache in Production Environment

To host BioQueue with Apache, you must first install the mod_wsgi Apache module. On Ubuntu, you can install this
as follows:

sudo apt-get install libapache2-mod-wsgi

If you have not installed Apache, before running command above, you need to setup Apache server by running this
command:

sudo apt-get install apache2

You can then find an example VirtualHost file located at deploy/000-default.conf. Copy this file to /etc/
apache2/sites-available/ and restart the Apache server by running (on Ubuntu):

sudo /etc/init.d/apache2 restart

Note: For virtualenv users, please replace /usr/lib/python2.7/dist-packages with /path/to/venv/
lib/python2.7/site-packages.

2.5. FAQ 17

BioQueue Documentation, Release 1.0.0

2.5.4 Cannot install MySQL-python?

By default, BioQueue will use a python package called MySQL-python to connect to MySQL server. However, it may
be hard to install it especially for non-root users. The alternative solution is to use PyMySQL (a pure python mysql
client). We provide a python script in BioQueue’s deploy folder to help you to complete the switch. So for most of
our users, the following command should be enough to solve this problem:

python deploy/switch_from_MySQLdb_to_PyMySQL.py

However, if you want to try it yourself, here is the protocol:

1. Remove MySQL-python==1.2.5 from prerequisites.txt in deploy folder.

2. Copy the python code and paste them into the begining of manage.py and worker >> __init__.py:

3. Rerun install.py.

Code:

try:
import pymysql
pymysql.install_as_MySQLdb()

except ImportError:
pass

2.5.5 Cannot access BioQueue due to firewall settings

Sometimes, the firewall installed by the administrators of the cluster may block web access outside the cluster. Under
this circumatance, build a tunnel by hiring ssh should solve the problem. Here is an example:

ssh -N -L ${PORT}:localhost:${PORT} ${USER_NAME}@{REMOTE_ADDRESS}

Please replace ${PORT}, ${USER_NAME}, ${REMOTE_ADDRESS}with your own answers. If you use BioQueue’s
default settings, ${PORT} should be replaced with 8888.

2.5.6 Turn on E-mail Notification

We know that keeping an eye on watching those time-consuming jobs is very tedious, so BioQueue provides an E-mail
notification for changes among job status. By default, e-mail notification is silent. To turn on this push service, you
need to fill in a form in Settings >> Notification. If the Mail host textbox is left to be blank, then the
service will be silent, otherwise BioQueue will send a mail to you when a job is finished or an error is raised. And
then you can configure it as a mail client.

2.6 Cluster Specification

When running on cluster, BioQueue corporates with the original DRMs and associates them to allocate proper re-
sources for jobs. In this page, we will introduce:

1. How to use BioQueue in cluster

2. How to develop new cluster plugins for BioQueue

3. Problems you may encounter with

18 Chapter 2. Contents

BioQueue Documentation, Release 1.0.0

2.6.1 How to use BioQueue on clusters

The usage of BioQueue on clusters is identical to local or clouds. The only thing you need to do extraly is to tell
BioQueue you are using a cluster. Here is the protocol.

1. Install BioQueue following the protocol mentioned before.

2. Run BioQueue web server.

3. Login to BioQueue and open Settings.

4. Click Cluster Settings in the page and fill in the form. By default, the value for Cluster engine is
Run on local / cloud and all options for clusters are disabled. Once you choose a cluster engine (For
example, TorquePBS), the cluster model for BioQueue will be activated. To turn it off, change cluster engine
back to Run on local / cloud.

5. Click Save changes to save your changes.

6. Start the queue.

In Cluster Settings section, we provide some options. Here is a more detailed explanation for them.

Option Default Description
CPU cores for
single job

1 Specify the number of virtual processors (a physical core on the node or an “exe-
cution slot”) per node requested for this job.

Physicial mem-
ory

No limit Maximum amount of physical memory used by any single process of the job.

Virtual memory No limit Maximum amount of virtual memory used by all concurrent processes in the job.
Destination Default

server
Defines the destination of the job. The destination names a queue, a server, or a
queue at a server.

Wall-time No limit Maximum amount of real time during which the job can be in the running state.

For example, when BioQueue submits job on a cluster managed by TorquePBS, the options defined above will be
translated into Torque parameters like this:

1. -l ppn: CPU cores BioQueue predicts the job will take, if the prediction model has not been generated, the ppn
option is equal to CPU cores for single job.

2. -l mem: The physical memory BioQueue predicts the job will use, if the prediction model has not been gener-
ated, the mem option is equal to Physicial memory.

3. -l vmem: The virtual memory BioQueue predicts the job will use, if the prediction model has not been generated,
the vmem option is equal to Virtual memory.

4. -q: The destination defined in Destination, for example, if the cluster has five queues: high, middle, low,
FAT_HIGH and BATCH, the destination should be one of them.

5. -l walltime: Maximum amount of real time during which job can be in the running state defined in Wall-time.
For example, 24:00:00.

2.6.2 How to develop new cluster plugins for BioQueue

The support for clusters depends on the corresponding plugins. All python files in the folder
worker>>cluster_models will be seen as a plugin. BioQueue can work with these plugins directly and users
do not need to modify any code of BioQueue. However, limited by the clusters we can access, BioQueue now just
provides build-in plugins for TorquePBS (carefully tested under production environment) and HTCondor (not tested
under production environment). So we hope our users who have the privilege to access other types of DRMs can

2.6. Cluster Specification 19

getstarted.html

BioQueue Documentation, Release 1.0.0

involve in the development of cluster plugins. Here we provide a detailed documentation for developing new plugins
for BioQueue.

1. Coding conventions

1. Required: All plugins files are written in Python or at least provide a wrapper written in Python. The file name
should be identical to the DRM’s name and other supplementary files should use the DRM’s name with different
suffix. Take TorquePBS for example, the plugin file should be named as TorquePBS.py and if you use an extra
file as the template for job script, the name of it should be TorquePBS.tpl.

2. Suggested: Function name or variable name should follow the style guide for Python code stated in PEP 8. In
brief, both function name and variable in function should be lowercase.

3. Suggested: Two blank lines between two function block are expected.

2. Functions should be implemented in the plugin

The plugin must provide three functions for BioQueue to call. When you develop a new plugin, REMEMBER TO
FOLLOW THE PARAMETER LIST WE PROVIDE BELOWE!!

submit_job

This function enables BioQueue to submit a job to the cluster via a DRM. The prototype of the function is:

submit_job(protocol, job_id, job_step, cpu=0, mem='', vrt_mem='', queue='', log_file='
→˓', wall_time='', workspace='')

param protocol string, the command a job needs to run, like “wget http://www.a.com/b.txt”

param job_id int, job id in BioQueue, like 1

param job_step int, step order in the protocol, like 0

param cpu int, cpu cores the job will use

param mem string, allocated physical memory, eg. 64G.

param vrt_mem string, allocated virtual memory, eg. 64G.

param queue string, job queue

param log_file string, path to store the log file

param wall_time string, cpu time

param workspace string, the initial directory of the job, all output files should be stored in the folder, or
the users will not be able to see them

return int, if success, return job id in the cluster, else return 0

Note: BioQueue will assign ‘’ to both mem and vrt_mem if the user doesn’t define the max amount of pyhsical memory
or virtual memory a job can use and there are no prediction model to predict the amount of resource the job will
occupy.

Note: protocol here is just a single step in the protocol defined in BioQueue

20 Chapter 2. Contents

https://www.python.org/dev/peps/pep-0008/
http://www.a.com/b.txt

BioQueue Documentation, Release 1.0.0

query_job_status

This function provides BioQueue an interface to query the status of a job. The prototype of the function is:

query_job_status(job_id)

param job_id int, job id in the cluster

return int, job status

If the job has completed, the function should return 0. If the job is running, it should return 1. If the job is queuing, it
should return 2. If an error occurs during the execution of a job, it should return a negative number.

cancel_job

The function allows BioQueue to terminate the execution of a job. The prototype of the function is:

cancel_job(job_id)

param job_id int, job id

return if success, return 1, else return 0

3. Share the plugin with everyone

To share your plugin with other people, please fork BioQueue at github, and copy the plugins files into
worker>>cluster_models. Then you can start a pull requests. Once we receive your pull requests, we will
validate it as soon as possible. After that your plugin will be available for everyone.

2.6.3 Problems you may encounter with

1. Install python 2.7 or high and pip without root privilege

Cluster users usually do not have root privilege, and the python installation may be out-of-date. So it may be
hard for biologists to configure the python environment for BioQueue, here we provide a helper script in de-
ploy/python_pip_non_root.sh. This shell script will download source code of Python 2.7.13 from Python.org and
compile it on the machine. You can run the script by running:

cd deploy
chmod +x python_pip_non_root.sh
./python_pip_non_root.sh

If the compile process failed, you can download a pre-built binary from ActiveState straightforwardly. NOTICE: the
pre-built binary from ActiveState cannot be used in production environment.

After installation, you can add the bin directory to your PATH environment variable for quicker access. For example,
if you use the Bash shell on Unix, you could place this in your ~/.bash_profile file (assuming you installed into
/home/your_name/bin):

export PATH=/home/your_name/bin:$PATH

then save the .bash_profile file and run:

2.6. Cluster Specification 21

https://github.com/liyao001/BioQueue
https://www.python.org
https://www.activestate.com/activepython/downloads

BioQueue Documentation, Release 1.0.0

source ~/.bash_profile

Now you should be able to run BioQueue with the new Python.

2. Cannot run BioQueue with sqlite on clusters

Before answer the question, we highly recommand that all users use MySQL rather than SQLite. When running
BioQueue on a cluster with Network File System (NFS), you may get an error message like:

django.db.utils.OperationalError: disk I/O error

The reason for this error is that SQLite uses reader/writer locks to control access to the database, while those locks
are unimplemented on many NFS implementations (including recent versions of Mac OS X). So the only solution is
to use a database software like MySQL.

22 Chapter 2. Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

23

	How does BioQueue work?
	Contents
	Get Started
	Protocol
	Job
	Examples
	FAQ
	Cluster Specification

	Indices and tables

